
REPORT DOCUMENTATION PAGE IW& M
ubis v.0 .rf nt r s esadon I -ti eu *moin aw mt iq I hMw pw # me. kb"idh th uime " bwanhi..... "0 b'fr'ginimaee.,,f.u.9 mulf~iab* Ur d ie r m..~ . e~mi th eheis .4 iheDmih bnd musmg this bsumui wanv iwm .9ti esib .9ibg• i

eissaisneb 1-' *&hq hsbuwdes.1**shWmrneu Meados w%* ss 13eaii fokd NoWSS p0 i .pwsts.P 121511 -abm D"N" SIm. *120 Viat VA
W=a4=02 mid lo *ae Ollim o h4 uhpmln wft &pdiW PNO m, #A 1wolf I .9 wuqmw wftd h. Wagtw. cc am"4

1. AGENCY USE (Leiw 2. REPORT 3. REPORT TYPE ANDDTS

4. TIL AND 5 . FUNDING

VADS Sun4 =) MIPS R4000/VAda-11O-40630, Version 6.2, Host:
Sun SPARCstation 2 , Target: SGI Indigo XS4000
93o9o1W1.11324 AD-A273 719

6.

Authors:

Wright-Patterson AFB
7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING

Ada Validating Facility, Language Control Facility ASD/SCEL ORGAN 2TON
Bldg. 676, Room 135
Wright Patterson AFB, Dayton OH 45433

9. SPONSORINGWMONITORING AGENCY NAME(S) AND 10. SPONSORING WONITORING
Ada Joint Program Office VM AGENCY

The Pentagon, Rrn 3E118
Washington, DC 20301-3080 1993

11. $UPPLEMEI•TRY :

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION
Approved for public release; distribution unlimited

13. (dadxmum 2W
VADS Sun4 *) MIPS R4000/VAda-110-40630, Version 6.2, Host: Sun SPARCStation 2 under
SunOS 4.1.2, Targe: SGI indigo XS4000, ACVC 1.11

14. SUJECT15. NUMBER OF

Ada programming language, Ada Compiler Val. Summary Report, Ada Comp 16. PRICE

AA9 iS4B2 A!tyAj.8l. Testing, Ada Val. Office, Ada Val. Facili y
17. SECURITY /18. SECURITY I19. SECURIrY 20. IMrATION OF
CLASSIFICATION / CLASSIFICATION
UNCLASSIFIED I UNCLASSIFIED I UNCLASSIFIED UNCLASSIFIED
tEN Szara�rd Form 2w (Re. 249)

Proealbd by ANSI Sd.

AVF Control Nuber: AVr-VSR-571.0893
Date VSR Completed: September 28, 1993

93-07-23-VRX

Ada COMPILER
VALIDA•I• O SLM REPORT:

Certificate Number: 930901W1.11324
Verdix Corporation

VADS Sun4 -> MIPS R4000/VAda-110-40630, Version 6.2
Sun SPARCstation 2 under SunOS 4.1.2 ->

SGI Indigo XS4000 (bare board)

(Final) Acceslon For

rNTIS CRA&I

cDTIC TAB ¶
Unannounced 0

Prepared By: Justification...-
Ada Validation Facility

645 C CSG/SCSL
wright-Patterson Afl OR 45433-6503 By.....

Availability Codes
Avail and I or

Dist Special

DTIC QUALITY INSECTD 8

93-30204--93 12 13 054 lilliil

Certificate Information

the following Ada implementation was tested and determined to pass AM
1.11. Testing was completed on September 1, 1993.

Compiler Name and Version: VADS Sun4 -> •IPS R4000/VAda-110-40630, Version 6.2

Host Computer System: Sun SPARCstation 2
under SunS 4.1.2

Target Coputer System: SGI Indigo XS4000 (bare board)

Customer Agreement Number: 93-07-23-VRX

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
930901W1.11324 is awarded to Verdix Corporation. This certificate expires
two years after MIL-STD-18158 is approved by ANSI.

This report has been reviewed and is approved.

Ada Valiatio-n Facility
Dale E. Lange
Technical Director
645 CCSG/SCSL
Wright-Patterson AM OH 45433-6503

Wda l~diftfon Organizatio-n

Direto ", ter and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ad ont Program Office

N. Dirk Rogers, Major, USA?
Acting Director
Departaent of Defense
Washington DC 20301

ATTACHMENT I

DECLARATION OF CONFORMANCE

Customer: Verdix Corporation

Ada Validation Facility: ASD/SCEL, WPAFB OH 45433-6503

ACVC Version: 1.11

Ada Implemeatation:

Compiler Name and Version: VADS Sun4 -> MIPS R4000, Version 6.2,
VAda-110-40630

Host Computer System: Sun SPARCstation 2, SunOS 4.1.2

Target Computer System: SGI Indigo XS4000
(used as a MIPS R4000 bare board)

Customer' s Declaration:

[I/we], the undersigned, declare that [I/we] have no
knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation
listed above.

Customer Signatire Date

TAILE OF CiMf

OIAITU 1 M3TQ

1.1 USE OF THS VALIDI SU REPORT 1-11.2 RZZZCS . . **. o........ 1-2
1.3 ACVC TEST CASSE 1-2
1.*4 DFzp=TI~lN OF U5. . 00 1-3

CHAPTER 2 CJLI5lNI DENDENCIEUS

2.1 WITPATM 2-1
2.2 nIUPLICALE TEM. o 2-1
2.3 TEST MODIFrICATICINS 2-3

CHAPTER 3 PROCEssnG nIFamu l

3.1 TESTING DIJIENT 0- 3-1
3.2 St**VaY OF TEST RESUTS 3-1
3.3 TEST ,XCW7IO. o 3-2

APPENDIX A MRO PARAMETERS

APPENDIX B COKPILATIC SYS=Dl OPTI•CS

APPENDIX C APPEN4DIX F OF THE Aa STANDRD

CHNMP1 1

The a implementation described above was tested according to the Mad
Validation Procedures [Pro90] against the Ada Standard [Aa83] using the
current Ada Compler Validation Capability (AVC). This Validation Suiary
Report MR) gives an account of the testing of this Ada impimentation.
For any technical terms used in this report, the reader is referred to
[Pro9O]. A detailed description of the A may be found in the current

ACMC User's Guide [UG89].

1.1 USE Or THIS VALMATION SLI9M

Consistent with the national laws of the originating country, the Mda
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedoia of
Informiation Act" (5 U.S.C. *552). The results of this validation apply
only to the coputers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and coqplete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Informtion Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Ccmputer and Software ngineering Division
Institute for Defense Analyses
1801 North Deauregard Street
Alexandria VA 22311-1772

1-1

---- CHx

1.2 REIMNCES

[da83] Reference Nsnual for the Ma Pr 17.

[Pro90] Ada omiler Validation Procedures, Version 2.1, Ada Joint
PrograM OZZICO, August 1990.

[UG891 Ada Comiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by mans of the ACYC. The AtCY
contains a collection of test program structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and 3 tests are executable. Class B and
class L tests are expected to produce errors at compile tims and link tim,
respectively.

The executable tests are written in a self-checking maner and produce a
PASSE, FAILle, or NOT APPLICLE message indicating the result when they
are executed. Three Ada library units, the packages REOM and S 3,
and the procedure C7ECK FILE are used for this purpose. The package REZPCr
also provides a set of tdentity functions used to defeat seam copiler
optinixations allowed by the Mda Standard that would circumvent a test
objective. The package SPlRf3 is used by many tests for Chapter 13 of the
AMa Standard. The procedure CHC FILE is used to check the contents of
text files written by som of the Mlass C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHEK FILE is checked by a set of
executable tests. If these units are not opirating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the AMa Standard are detected. Some of the class 8 tests contain legal Ada
code which must not be flagged illegal by the copiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In mom tests of the ACYC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
iuplementatia-dependent characteristics. The modifications required for
this Imlementation are described in section 2.3.

1-2

q

For each a iplemntation, a customized test suite is produced by the
AW. This customization consists of =mking the modifications described in
the preceding paragraph, removing withdram tests (see section 2.1), and
possibly removing som inapplicable tests (see section 2.2 and [UGS9]).

In order to pass an AC'•C an Aa iplementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DSPINITIQI or

Ada COmiler The software and any needed hardware that have to be added
to a giwn host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The mans for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation sumary
(ACrC) report.

Ada An Ada compiler with its host computer system and its
Iplemntation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ma certification system.
Office (AJMO)

Ada The part of the certification body which carries out the
alidation procedures required to establish the copliance of an Ada

Facility (AVF) iplemnetation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ma certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACYC version.
anAda
IMlementation
Computer A functional unit, consisting of one or more computers and
system associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
program that modify themselves during execution. A
coMputer system my be a stand-alone unit or may consist of
several inter-connected units.

1-3

x wCH

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the term and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Most Computer A coputer system where Ma source program are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ma implementation.

ISO International Organization for Standardization.

LPM The Ada standard, or Language Reference Nanual, published as
ANSI/MIL-STID-1815A-1983 and ISO 8652-1987. Citations from
the Lax take the form "<section>. <subsection>: <paragraph>."

Operating Software that controls the execution of program and that
System provides services such as resource allocation, scheduling,

input/output control, and data mamnagement. Usually,
operating systems are predominantly software, but partial or
colete hardware iaplementations are possible.

Target A computer system where the executable form of Ada program
Computer are executed.
system

Validated Ada The compiler of a validated Ma implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

oCMPM 2

LMLEMLRTICH VDEEDOIES

2.1 W7HDM TSTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVW. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C355081 C355083
C35508N C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B490083 A74006A C74308A 383022B
B83022H B83025B B83025D C83026A B830263 C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223h BC1226A CC1226B
BC30099 3D1B02B D.1B06,A ADlIBO8A D2AD2A CD2A21E
CD2A23E CD2A32A CD2h41A CD2A41E CD2AB7A CD2B15C
OD3006A ED4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4OSID CD5111A CD7004C ED7005D
CD700SE AD7006A CD7006z AD7201A AD7201B CD7204B
AD7206A BDO002A BD6004C CD9005A CD9005B CDA201E
C921071 CE2117A CE2117B CE2119B C92205B CE2405A
C,3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INRPPLXCAB TESTS

A test is inapplicable if it contains test objectives which are irrelevunt
for a given Ada implem1ntation. Reasons for a test's inapplicability my
be supported by documents issued by the ISO and the AMPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

WONJTIC DUC ZES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTL.MAX DIGITS:

C24113L.,,Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LOGINTGGU; for
this imple--ntation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55907A 955B09C B86001W C86006C CD7101F

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, MG FLOAT, or SHOTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEN.NRX MANTISSA of 47 or greater; for this
implementation, NAX _WTUISSA is leis than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MRCHIIE OVERFLONS is FALSE for floating point types and the results of
various- floating-point operations lie outside the range of the base
type; for this ipleetation, N INE OERF is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DUARIkON; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside the
range of type DURATIN; for this implementation, the ranges are the
Same.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

The tests listed in the following table check that USE ER is raised
if the given file operations are not supported -for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation mode File Access Method

2-2

ANEWDMrTON DRPINDDCIES

C92102D CKEAT IN FILE S3mnIAL..IO
CR2102E CRFATE afi FILE SqE TII0
C32102F CREATE INOCT FILE DIRECT 10
CE21021 CRERTE IN rie DIRMCT-I0
CE2102J CREATE Ofl FILE DIRM-C-IO
CZ21o2N 0PEN IN FILE S•iEwhIA 10
CE21020 RESET IN-ILE SEM3DITAL0IO
CE2102P 0PEN OaU FILE SEMJDTIAL 10
C2102Q RESET WU--zLE S•UMiI _IoI0
CE21o2R o0M mo!T FILE DIRECT Io
CE2102S RESET INO "FILE DIRECT"0O
CE2102T OPEN IN FLEE DIRZEC-10
CE2102U RESET INF-ILE DIRECT 1O
CE2102V OPEN WtF FILE DIE•C-10
CE2102N RESET (X7If-ILE DICf-TIO
CE3102E CREATE IN FILE TMCT Id
CE3102F RESET Ang Mode TEr-IO
CE3102G DELETE TEXT I0
CR31021 CREATE OUT FILE T --IO
CE3102J 0PEN IN TILE T --IO
CE3102K 0PE N CifFILE TET--IO.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded;- this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE uRM if the capacity of an
external direct file is exceeded; this Tplementation cannot restrict
file capacity.

CR3304A checks that SET LINE LD•NNS and SET PAGE LENGM raise
USE Elmi if they specify an Inappropriate valiue for the external
filli; there are no inappropriate values for this iuplementation.

CE3413B checks that PAGE raises LAYOUT ER? when the value of the
page numer exceeds COUNTI'LAST; for this TIplmntation, the value of
CMIRT'LAST is greater than 150000, making the checking of this
objective iqpractical.

2.3 TEST CODIFICATIONS

modifications (see section 1.3) were required for 22 tests.

The following tests were split into two or more tests because this
implemntation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009A B33301B B38003A B38003B B38009A B38009B
BS5008G B85008H BC1303F BC3005B BD2B03A BD2DO3A
BD4003A

2-3

!NPLDID2 TICN DEPENNCIES

CD1009A, CD1009I, CalCO3A, CD2A22J, CI2A24A, and CD2A31A..C (3 Tests) were
graded passed by Evaluation Modification as directed by the AVO. These
tests use instantiations of the support procedure LDGMT CHECK, which uses
Unchecked Conversion according to the interpretation jiven in AI-00590.
The AVO 7uled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instances of LENOM C-ECK-i.e, the allowed Report.Failed messages have the
general form:

" *CHECK ON4 RDED KMI1 FM <TmPE 1> FAILED."

AD001B was graded passed by Test Modification as directed by the AVO.
This test checks that no bodies are required for interfaced subprograms
among the procedures that it uses is one with a paramter of mode OUT (line
36). This implemenation does not support pragna INTERrACE for procedures
with parameters of mode OUT. The test was modified by coenting out line
36 and 40; the modified test was passed.

2-4

C T 3

PIOCESS]ING INCU ChI•

3.1 TESTIME ,IRO•ERl,

The Ada implemntation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Corey Ashford
Verdix Corporation
1600 N.W. Compton Drive
Aloha, OR 97006-6905

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SMM-Y OF TEST RESULTS

An Ada implementation passes a given ACYC version if it processes each test
of the customized test suite in accordance with the Ada Programing
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all prot nssed tests (inapplicable and applicable), a result was
obtained that. conforms to the Ada Programming Language Standard.

The list of item below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximmm
precision (item e; see section 2.2), and those that depend on the support
of a file system - if non is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

3-1

PC0SSmnG INO nON

a) Total Number of Applicable Tests 3809
b) Total Number of Withdrawn Tests 95
c) Processed Ina-plicable Tests 65
d) Non-Processed 1/0 Tests 0
e) NWn-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 266 (c+d+e)

g) Total Nuber of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EBWmcUTN

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a Sun Workstation and copied over Ethernet
to the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect

-V Suppress warning diagnostics.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

AhP1IX A

MkR= PARMTR

This appendix contains the macro parameters used for customi•ing the AcrM.
2he meaning and purpose of these paramters are explained in ([G89]. 1he
parameter values are presented in two tables. The first table lists the
values that are defined in term of the naximm input-line length, which is
the value for $MRX IN LN--also listed here. These values are expressed
here as Mda string-aggregates, where "VW represents the naxim= input-line
length.

Macro Parameter Macro Value

$MRX IN LEN 499 - Value of V

$BIG.ID1 (l..V-1 -> 'A', V -> '1')

$BIG_.D2 (l..V-1 -> 'A', V -> '2')

$SIG_.D3 (l..V/2-> 'A') '31 &
(l..v-1-v/2-> 'A')

$nIG..D4 (l..V/2 -> 'A') & '4' &
(l..v-l-v/2-> 'A')

$BIG_.I1T_LIT (l..V-3-> '0') & "298"

$BIGREAL LIT (1..V-5-> '0') & "690.0"

$BIGSTh.'r• & (l..V/2 -> 'A') & ,-

$BIG STJnG2 , &, a (l..V-l-V/2 -> 'A') a '1' a '"'

$BLNM (l..V-20 -> '

$MRX LENI flT BUME LITERAL
"2:" & (l..V-5 => '0') & "11:"

$MRX LfN REAL BASED LITERAL
"16:" & (1..V-7-> '0') a "F.E:" -

A-1

$ _s1I ST _LG ,',AL ' , (l..V-2-> 'A') 6 ''

VTe following table lists all of the other macro paramters and their
respective values.

Macro Parameter Macro Value

$=C..SIZE 32

$RLIGQT 4

$cxIT•_ON SI' 2_147483647

$DUAULT_ I..SIZE 16_777_216

$DEFAU.T_ST_ UNIT 8

$Dg•MMT _SYS_ NME s Ci4 OsS a4000

$D=7LDOC 0.0000000004656612873077392578125

$ENTRY _.ADCESS SYSTH•."+"(16#40#)

$ENTRY_ AZ_ ESSl SYSTEM. "+" (16#80#)

$mRyKADWESS2 SYSTU."+"0(16#100#)

$FIE._LASD T 2147483_647

$TILEW•' '

$r _ NME NOSUCH_ TYPE

$FLOA.TNAM NOSUCHTYPE

$ -!STRINO

$= mSTRUn=2 "CANNT RESsRICTFiLECAPACiTy"

M~ _RTBN DURATION
100 000.0

$W=EAFL"MA DUR.&lON BASE LAST
To oooo000.0

$GRETEkTHANFLOAT BASE LAST- - 1.U~E+308

$ETR TSAN FLOASFE LARGE
9.U1E37

A-2

9.01F37-

$H~IGOPIORITY 99

$iLLw#ALsneimLz FLEmK
"w/i11ega1/filik m~m/2) J %2102c .dat"

- F/ill~gal/fik 11. nA121O2C* .dat"

$INRPPMOFIMT LIMKLfEN=
- -1

$flCum PRA0,IR2 1oa~ Incu= (O328006D1 .TST")

$Iamm _FrST -2_147_483_648

UNSimURLUST 2_147483647

$Im'EGU LLST PLUS_1 2_147_483_648

$INTERACE LANGIP C

$LESS_1UAN DATICI -100000.0

$LISS THAN DURLTIOKDNE FIgrST
-i'Uo 0oo 00.0

$L ZH¶MaNTOR ASCII. LF & ASCII."F

$LII RIORITY 0

SOHI CODE STTmE
CODEKO'(OlP -> NoF);

WNP.1N3_OCKTYPE COCK 0

$NANTISShDOC 31

$M XDIGITS 15

$aMXINT 2 147 483 647

saMiIZTPLUS_1 2_147_483_648

$M NINT -2_147_483 '18

A-3

MACR -AAM

"$ Im; LIST SUM CROSR4000B

$macks~eciVIchTIG /rc/vads6 .20/test suites/acvcl . 1//CAC0/2120A

ompuWsIUCFC7M!102 /rc/vads6 .20/test_.uites/&cvcl-l/. 1/c/OC202S

$IsS1UCIVCMnI= /rc/vads6 .20/test suJtes/acvc1 . 1/C`/S/X3112h

o~mqsh~~I WI 16Fl0000003

Ono! Nfl SIZE 16_777216

$IMISTCVKUNIT 8

sam SYS NAME SUN4 CHOW 140005

$PAGE TZMM94 ASCII *FF

$uECMW DDINITIQ4 R3NCOV maSt OW3RMND; ND~ 3EXV

NAMDIE ~ cm0

$TASKSIZE 32

$053ASTSAGý_SIZE 1024

$TICK 0.01

$VARINUDLEAWESS VAR_1 'AWWSS

$VAIABL;_AWESS1 VAR 2 I'ADESS

$VARINXMLEA S3S2 VAR_3 'ADDRESS

MR-u m 3ASAGM PAWSSV

A-4

AP DMZX B

•WPILATICH SYS=! OMCW1S

he clmpiler options of this A iaplemntation, as described in this
Appendix, are provided by the customer. Unless specifically noted

se, references in this appendix are to compiler documentation &Ad
not to this report.

Syntax

ada (options) [source file]... (object file.o]...

Arguants

objectfile.o non-Aa object file nams. These files will be passed
on to the linker and will be linked with the specified
A object files.

options options to the cmiler. 7bese are:

-A (disassemble) Disassemie the units in the source file after
coqiling them. -A can be followed by arguments that further
defi the disassebly display (e.g., -Ma, -Ab, -Ad, -Af,
-Al, -As).

a Add hexadecimal display of instruction bytes to
disas ly lisi ng.

b Disasseuble the unit bod-a wdefault.
d Print the data section (if present)'as wel.
f Use the alternative format for output.
1 Put the disassembly output in file *file name.das"
a Disassemble the unit spec.

-a file name
(arahive) Treat file ram as an object archive file created
hv ar. Since some araaive files end with .a, -a is used to

stinguish archive files from MA source files.

-astatic/dynamic (SPMCaqpiler Ada only)

(static) if static is indicated, the Ma program is compiled

5-1

cowXAmN sysm OnamU

and linked statically. The default is dynamic.

-c suppress the control esasages generated Amen prag PAM
an4/or prag LIST are encountered.

-D identifier type value
(define) Define an identifier of a specified type and value.

-d (dependenies) Analyze for dependencies only. Do not do
semantic analysis or code generation. Uidate the library,
mmrking any defined units as uncmpiled. The -d option is
used by a.make to establish dependencies iang new files.
This option will attempt to do imports for any units
referenced from outer libraries. This should reduce
relocation and reduce user disk space usage.

-E
-E directory

(error output) Without a directory argument, ada processes
error massages using a.error and directs a brief message to
standard output; the raw error messages are left in
source file.err. If a directory nme is given, the raw error
outputis placed in directory/source file.err. ITh file of
raw error masages can be used as inrut to a.error. only
one -e or -Z option should be used.

-e (error) Process compilation error messages using a.error and
send it to standard output. Only the source lines containing
errors are listed. Only one -e or -E option should be used.

-Cferror file source file
(errir) Process source file and place any error massages
in the file indicated By error file. Note that there is
no space betwen the -Uf and error file.

-31

-El directory
(error listing) Sam as the -E option, except that a source
listing with errors is produced.

-el (error listing) Intersperse error massages ainng source
lines and direct to standard output.

-Elferror file source file
(erro! listing) Sm as the -f option, except that a source
listing with errors is produced.

-ev (error vi(l)) Process syntax error massages using a.error,
emAed them in the source file and call the environmnt editor
SM ED . If I "IEI is defined, the environment
variale E3 PASTEW-should also be defined. 30a PFATIU
is an editor siarch commnd that locates the first olcurrence
of '###? in the error file. If no editor is specified, vi(l)
is invoked.

8-2

CMOIUIATICK SYS=~ OWTIQU

The value of the environment variable Z TAUS, if set,
is used instead of the default tab setting-(8).

-, (full DIM) Do not trim the DIMlS tree before output to
net files. To save disk space, the DIMS tree will be
trimmd so that all pointers to nodes that did not involve
a subtree that define a symbol table will be nulled
(unless those nodes are part of the body of an inline or
generic or certain other values needing to be retained for
the debugging or compilation information). The trimming
generally remves initial values of variables and all
stateeits.

-G (GM) Display suggested values for the KIN _GSMADM
and MX GMADM IBRO directives.

-K (keep) Keep the Intermediate language (IL) file produced
by the compiler front end. The IL file will be placed in
the objects directory with the file name Ma_source.

-L library name
(libriay) Operate in VADS library library nme.
(Default: current working directory)

-lfile abbreviation (VADSself only)
(lbrary search) This is an option passed to the ld(1)
linker, telling it to search the specified library file.
(No space between the -1 and the file abbreviation.)

-M unit name
(maTn) Produce an executable program by linking the named
unit as the main program. unit name must already be
compiled. it must be either a parameterless procedure or
a parameterless function returning an integer. The
executable program will be named a.out unless overridden
with the -o option.

-K source file
(mainT Produce an executable program by compiling and
linking source file. The main unit of the program is
assumed to be B root name of the file (for foo.a the
unit is foo). Only one file may be preceded by -M. The
executable program will be named a.cut unless overridden
with the -o option.

-N (no code sharing) Compile all generic instantiations
without sharing code for their bodies. This option
overrides the SHR BODY INWO directive and the SHMR COM
or SHE_DD Y pragmas.

-0[0-9]
(optimize) Invoke the code optimizer. An optional digit
(there is no space before the digit) provides the level of

B-3

ONPILATION SYS=U OPTMONS

optimization. 7he default is -04.

-0 full optimization
-00 no optimization (use for debugging)
-01 copy propagation, constant folding, removing

dead variables, subsuming moves betwen scalar
variables

-02 add xon subexpression elimination within
basic blocks

-03 add global comon subexpression elimination
-04 add hoisting invariants from loops and address

optimizations
-05 add range optimizations, instruction scheduling

and am pass of reducing induction expressions
-06 no change
-07 add one ore pass of induction expression reduction
-08 add one ore pass of induction expression reduction
-09 add one more pass of induction expression

reduction and add hoisting expressions commion to
the then and the else parts of if statemsnts

Hoisting from branches (and cases alternatives) can be slow
and does not alwys provide significant performance gains so
it can be suppressed.

-o executable file
(output) This option is to be used in conjunction with
the -K option. executable file is the nam, of the executable
rather than the default, a.out (self) or a.vox (cross).

-P Invoke the Ada Preprocessor.

-R VADS library
(recompile instantiation) Force analysis of all generic
instantiations, causing reinstantiation of any that are out
of date. VADS library is the library in which the
recompilation Ts to occur. If it is not specified, the
recompilation occurs in the current working directory.

-r (recreate) Recreate the library's WAS TRLE file. This option
reinitializes the file and exits. T7hi allows recovery from
"GVAS exhausted" without recomiling all the files in the library.

-S (suppress) Apply praga SUPPRESS to the entire compilation
for all suppressible checks.

-sh (show) Display the name of the tool executable but do not

execute it.

-T (timing) Print timing information for the compilation.

-v (verbose) Print compiler version number, date and time of
compilation, name of file compiled, command input line,
total compilation time and error summary line. Storage usage.

B-4

CIWIIATo" SYSE OFIONS

infonation about the object file is provided.

-w (warnings) Suppress warning diagnostics.

source file nmn of the source file to be compiled.

Description

7he ada ccmmnd executes the Aa copiler and compiles the namd Ma
source file. The file msot reside in a VAN library director. lhe
ada.lib file in this directory is modified after each ads unit is
compiled.

By default, ada produces only object and net files. If the -K option
is used, the compiler automatically invokes a.ld and builds a complete
program with the named library unit as the main program.

For cross systems, the compiler generates object files compatible with
the host linker in VO format. The 'O format is discussed in
Apendix A of the Programr's Guide.

Non-Ada object files (.o files produced by a comiler for another
language) my be given as arguments to ads. 7hese files will be passed
on to the linker and will be linked with the specified ads object files.

Comnd line options my be specified in any order but the order of
compilation and the order of the files to be passed to the linker can
be significant.

Several VADS compilers may be simultaneously available on a single
system. Because the ada comand in any VADS location/bin on a system
will execute the correct compiler cospnemti based upon visible
library directives, the option -sh is provided to print the name of
the components actually executed.

Program listings with a disassembly of machine code instructions
are generated by a.db or a.das.

NM': If two files of the same name from different directories are
compiled in the sam ada library using the -L option (even if the
contents and unit names are different), the second compilation will
overwrite the first. For example, the compilation of
/Asr/directory2/foo.a -L A/sr/vads/test will overwrite the
compilation of A/sr/directoryl/foo.a -L /Usr/vads/test in the
VAN library Assr/gads/test.

Diagnostics

The diagnostics produced by the VADS compiler are intended to be
self-explanatory. Most refer to the 3M. Each NI reference includes a
section amber and optionally, a paragraph nmber enclosed in
parentheses.

B-5

CO1ILATUON SYSTE OWTIONS

LINKER OPTI(NS

The linker options of this Ada implemntation, as described in this
Appendix, are provided by the customr. Valess specifically noted
othe•wise, references in this appendix are to linker documentation and not
to this report.

Syntax

a.ld [options] unitname [linker optional

Arguments

linker otionslIn arguments after unit ame are passed to the linker.

library abbreviations oriobject files.

options options to the a.ld comand. These are:

-DO (objects) Use partially linked objects instead of archives
as an intermediate file if the entire list of objects cannot
be passed to the linker in one invocation. This option is
useful because of limitations in the archiver on sme hosts
(including ULTRIX, UP-= and System V). (VADSself only)

-DT (time) Displays how long each phase of the prelinking process
takes. (VADSself only)

-Du unit list
(units) Traces the addition of indirect dependencies to the named
units. (VADSself only)

-Dx (dependencies) Displays the elaboration dependencies used each
time a unit is arbitrarily chosen for elaboration. (VADSself only)

-DK (debug) Debug memory overflow (use in cases where linking
a large number of units causes the error message "local
symbol overflow" to occur). (VAD6self only)

-E unit name
(eliborate) Elaborate unit name as early in the elaboration
order as possible.

-F (files) Print a list of dependent files in order and suppress
linking.

-K (keep) Do not delete the termorary file containing the list of
object files to link. This file is only present when many object
files are being linked. (SGI only)

-L library_name

B-6

COMPILRTIXO SYST'S OPTONS

(library) Collect information for linking in library name instead
of the current directory. owver, place the execuetibl in the
current directory.

-o executable file
(output) Use the specified fielname as the name of the output
rather than the default a.out (self) or a.vox (cross).

-sh (show) Display the name of the tool executable but do not
execute it.

-T (table) List the symbols in the elaboration table to standard
output.

-U (units) Print a list of dependent units in order and

suppress linking.

-v (verbose) Print the linker command before executing it.

-V (verify) Print the linker command but suppress execution.

-w (warnings) Suppress warning messages.

unit name
name of an Ada unit. It must name a non-generic subprogram.
If unit name is a function, it must return a value of the
type SANDARD.INT2 . This integer result will be passed back
to the shell as the status code of the execution.

Description

a.ld collects the object files needed to make unit name a main
program and calls the ld(l) linker to link togethei all Ada and
other language objects required to produce an executable image in
a.out (self) or a.vox (cross). The utility uses the net files produced
by the Ada compiler to check dependency information. a.ld produces
an exception mapping table and a unit elaboration table and passes
this information to the linker. The elaboration list generated by
a.ld will not include library level packages that do not need
elaboration. Similarly, packages that contain no code that can raise
an exception will no longer have exception tables.

a.ld reads instructions for generating executables from the ada.lib
file in the VADS libraries on the search list. Besides information
generated by the compiler, these directives also include WiTmn
directives that allow the automatic linking of object modules
compiled from other languages or Ada object modules not named
in context clauses in the Ada source. Any number of Wr7n
directives may be placed into a library but they must be
numbered contiguously beginning at WI'flf. The directives are
recorded in the library's ada.lib file and have the following form.

WITH1:LINK:object file:
WITH2:LINK:archive file:

B-7

CMTATIM• SYS= OPTICNS

W!THi directives may be placed in the local Ada libraries or in
any VADS library on the search list.

A WrThn directive in a local VADS library or earlier on the
library search list will hide the same numbered WITmi directive
in a library later in the library search list.

Use the tool a.info to change or report library directives in
the current library.

For VADSself on Silicon Graphics Computer Systems, the
USE LAST LM IMFO directive speeds relinking by retaining a list
of Units. theTr types, seals and dependencies.

VADS location/bin/a.ld is a wrapper program that executes the
correct executable based upon directives visible in the ada.lib
file. This permits multiple VADS compilers to exist on the same
host. The -sh option prints the name of the actual executable file.

Files

a.out (self), a.vox (cross) default output file
.nets Ada DIh1• net filas directory
.objects/* Ada object files

VADS location/standard/* startup and standard library routines

Diagnostics

Self-explanatory diagnostics are produced for missing files,
etc. Additional massages are produced by the ld linker.

8-8

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed iqplementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The itplementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Imple.entation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDM is

type INTEGER is range -2147483648 .. 2147483647;
type SOT INTEGER is range -32768 .. 32767;
type TINY _NTEGER is range -128 .. 127;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type SNORT FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LOM ft is digits 15 range -1.797693134862325+308

1.79769313486232Z+308;

type DURATION is delta 0.0001 range -214748.3648 .. 214748.3647;

end STANDARD;

C-1

APPMNIX F OF MM Ada STAh•3D

APPMIX F. Impleinntation-Dependent Characteristics

1. Implemntation-Dependent Pragmas

1.1. INLINE _Ly Pragme

The MOE CONLY pragm, when used in the sam way as pragma
MINE, indicat.s to the compiler that the subprogram must
always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which saves code
space. If a user erroneously makes an nIN ONLY subpro-
grM recursive a warning message will be amitted and an
1OM ERM will be raised at run time.

1.2. INITIALIZE Pragma

Takes one of the identifiers STATIC or DMMIIC as the single
argument. This pragma is only allowed within a library-
level package spec or body. It specifies that all objects
in the package be initialized as requested by the pragma
(i.e. statically or dynamically). Only library-level
objects are subject to static initialization; all objects
within procedures are always (by definition) dynamic. If
pragma INITIALIZE(STATIC) is used, and an object cannot be
initialized statically, code will be generated to initialize
the object and a warning message will be generated.

1.3. BUILT IN Pragma

The BUILT IN pragma is used in the implementation of some
predefinaU Ada packages, but provides no user access. It is
used only to implemnt code bodies for which no actual Ada
body can be provided, for example the MACHINE_CODE package.

1.4. SHMME CODE Pragma

The SHARE CODE pragma takes the name of a generic instantia-
tion or 5 generic unit as the first argment and one of the
identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a
declarative item in a declarative part or package specifica-
tion, or after a library unit in a compilation, but before
any subsequent compilation unit.

When the first argument is a generic unit the pragma applies
to all instantiations of that generic. When the first argu-
ment is the name of a generic instantiation the pragma
applies only to the specified instantiation, or overloaded
instantiations.

If the second argument is TRUE the compiler will try to

share code generated for a generic instantiation with code

C-2

APPNDIX F Or TWE Ad& STAND

generated for other instantiations of the same generic.
Whan the second argumnt is FALSE each instantiation will
get a uniqis copy of the generated code. The extent to
which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared
for the generic unit.

The name pragema SHARE BODY is also recognized by the imple-
mentation and has Th same effect as SHARE CO. It is
included for compatability with earlier versicn of VADS.

1.5. NOIMAM Pragema

The pragea suppresses the generation of the image array used
for the IiE attribute of enumeration types. This elia-
inates the overhead required to store the array in the exe-
cutable image. An attempt to use the INGE attribute on a
type whose image array has been suppressed will result in a
compilation warning and P40CM M R raised at run time.

1.6. EXUML NIME Pragma

The EXTURM NME pragma takes the name of a subprogram or
variable deTined in Ada and allows the user to specify a
different external name that may be used to reference the
entity from other languages. The pragms is allowed at the
place of a declarative item in a package specification and

nust apply to an object declared earlier in the same package
specification.

1.7. INTErFACE NRME Pragma

The INTEFACE NAM pragma takes the name of a a variable or
subprogram d~fined in another language and allows it to be
referenced directly in Ad. The pragma will replace all
occurrences of the variable or subprogram name with an
external reference to the second, link argument. The pragma
is allowed at the place of a declarative item in a package
specification and must apply to an object or subprogram
declared earlier in the same package specification. The
object must be declared as a scalar or an access type. The
object cannot be any of the following:

"a loop variable,
"a constant,
an initialized variable,
an array, or
a record.

1.8. I•ImDCXT CODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies that implicit code generated by the

C-3

A•MIX F C' OF T Aa N

codiler be allowed or disallowed. A wrning is issued if
O1T is used and any isplicit code needs to be generated.
The default is ON.

1.9. 'MWINIZE Cove Pragn

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a mnchine code
procedure. It specifies whether the code should be optim-

zed by the compiler. The default is CH. en OFF is
specified, the compiler will generate the code as specified.

2. Imlementation of Predefined Pragms

2.1. CMCWLLWX

This pragm is recognized by the inplementation but has no
effect.

2.2. ELNBom

This pragn is impllemented as described in Appendix B of the
Ada Rm.

2.3. INLIN

This pragma is impleamnted as described in Appendix B of the
Ada PN.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The
Ada subprograms can be either functions or procedures. The
types of parameters and the result type for functions must
be scalar, access or the predefined type ADCtSS in SYSTEM.
All paramters mist have mode IN. Record and array objects
can be passed by reference using the AWUSS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the
Ada Rn.

2.6. NEWRY SIZE

This pnapa is recognized by the implemntation. The imple-
mentation does not allow SYSTD to be modified by mans of
pragmas, the SYSTEM package must be recopiled.

2.7. NOR 4_ qThWI

This pragma takes one argtient which can be the name of
either a library subprogram or a subprogram declared immadi-

C-4

APPMIX F or TM Ada STAmaD

ately within a library package spec or body. It indicates
to the copiler that the subprogran will not be called
recursively allowing the compiler to perform specific optim-
ixations. The pragma can be applied to a subprogram or a
set of overloaded subprogram within a package spec or pack-
age body.

2.8. NOT ELAR3OM1.-

This pragm can only appear in a library package specifica-
tion. It indicates that the package will not be elaborated
because it is either part of the MTS, a confiquration pack-
age or an Ad package that is referenced fron a language
other than Ada. The presence of this pragma suppresses the
generation of elaboration code and issues warnings if ela-
boration code is required.

2.9. OPTIMIZ

This pragma is recognized by the iplementation but has no
effect.

2.10. PAcK

This pragma will cause the compiler to choose a non-aligned
representation for composite types. It will not causes
objects to be packed at the bit level.

2.11. PAGE

This pragma is impleuented as described in Appendix a of the
Ada 3m.

2.12. PASSIVE

The pragma has three forms :

PRAQH PASSIVE;
PRAGNA PASSIVM(SDNMIMA);
PRAGN4 PASSIVE(I JPT, <nmber>);

This pragm Pragma passive can be applied to a task or task
type declared immediately within a library package spec or
"b The pragma directs the compiler to optimize certain

ing operations. It is possible that the statements in a
task body will prevent the intended optimization, in these
cases a warning will be generated at compile tim and will
raise TRSKI EN at runtime.

2.13. PRIOaITY

This pragm is implaemnted as described in Appendix B of the

C-5

ANMmiZX r or T Ada STUMU

2.14. SWUM

This pragna is recognized by the implementation but has no
effect.

2.15. S1VW3 UNIT

This pragma is recognised by the implementation. The imple-
mntation does not allow SYSTE to be modified by mans of
prglas, the SYSTHI package amst be recoqiled.

2.16. SUPPJESS

This pragea is implemnted as described, except that
DIVSION IECK and in sor cases OVIEnFL C31"K canot besupreSsei.

2.17. SYTE NRM

This pragma is recognized by the implemntation. The iple-
mentation does not allow SYSTEM to be modlfied by means of
prams, the SYSTIM package must be recoiqiled.

3. Implementation-Dependent Attributes

3.1. P'hF

For a prefix that denotes an object, a program unit, a
label, or an entry:

This attribute denotes the effective address of the first of
the storage unilts allocated to P. For a subprogram, pack-
age, task unit, or label, it refers to the address of the
mchine code associated with the corresponding body or
statement. For an entry for which an address clause has
been given, it refers to the correspondlng hardware inter-
rupt. The attribute is of the type OlMiDn defined in the
package WINE COCK. The attribute is only allowed within
a machine code girocedure.

See section F.4.8 for more informtion on the use of this
attribute.

(For a package, task wilt, or entry, the 'RF attribute is
not supported.)

3.2. T'!TSKID

For a task object or a value T, TUS ID yields the unique
task id associated with a task. The vilue of this attribute
is of the type AWCESS in the package SYSTEM.

C-6

MAPENIX F Or THE ma S

4. Specification Of Package SYSTEM

with UKSIGNO TYPES;
paclage SY3'1l is

prage SUppress(AL CHOW);
prag zuwress(ONc TIc K_•St,);
prag not elaborated;

type MS is (s=44 cross r4000b);

SYSTIM NPEn : constant M :-sm4_cross.r4000b;

STCRGE UNIT : constant :- 8;
IMERY _ZE : constant :- 16_777 216;

- ytem-Dependent Named lubers

mw na : constant :- -2 147 483 648;
Pvd--n : constant :- 2 T47 183 947;

WC-DIGITS : constant :-1iN;
I"X-pinSS& : constant :-31;
FM MMK : constant :-2.0**(-31);
TICK, : constant :-0.01;

- Other System-dpdent Dclarations

subtype ionRTy is nawn range 0 .. 99;

imx c SIZE : integer :- 1024;

type ADVES is private;

function ">" (A: ADN ISl; B: AVCESS) return DOOLCD;
function "<" (A: ADDESS; B: ADIMXSS) return DOOLEM;
function ">-"(A: hDxxqE8; 3: AWNESS) return 3001fUIN;
function "<-m(A: ADCEWS; 8: AEDOSSS) return ;OOLmI,
function "- (A: AlWIZSS; B: ADNR3SS) return MTLM;
function +" (A: ADXmSS; 1: nITM) return ANOSSS;
function "u (A: AMtinS; 1: 1M10) return ADM=SS;

function +" (1: MISGIHTYPIS.UNSnG!Q _W1nn) return AMPESS;

function NORWY ADVMSS
(1: UNSIGmQiT Tym.u3sxG= _ nl=) return AWHESS rens a;

NO AMR : constant ADCESS;

type TS ID is private;
NoTSw _ : constant TASK ID;

C-7

APMWIX F or TMu a SMWAW

type PASSIVE TASK ID is private;
NQPASSIwEAWIf : constant PASSIVETASKID;

subtype BIG STATUS T is INl 7m;
SIG STATUN JIZE: c=istant :- 4;

type lROMM ID is private;
ND PFAXM If : constant 1FCPMIM;

type BYTE m T is (

BIG UCIAN

•5 1 •m_ : constant sBMoN=T :- BIG ZNDIAN;

type LMGMD43SS is private;

ND LONG ADMR : constant LOWG AMM3S;

function "+" (A: I=t ADSSM; I: WISN) return IaOAG ACmRSm;
function "-" (A: IQ6--ADCOS; 1: INUG) return L-GA-DEsS;

function M _rE LGIG ADC (A: ADtESS) return LONG ADRS;

function LDCAUZE(A: LONG_•AVRS ; BY31 SIZE : INTZG) return AVCESS;

function STRTIONCF(A: 1ONG ADDRESS) return naMUM

- Internal RTS representation for day. If the calendar package is used,
- then, this is the judian day.
subtype DRYT is INTEMU;

- Constants describing the configuration of the CIFO add-on product.
SUPPORTS INVOCTIM BY ADJEASS : constant BOOEDN :- TRU;
mPwrS&P33K'A30ftCR : constant BOOLEN :- I11;
MM _ACNC _MSUP10B : constant BOOLEN :- TJ

- Arguiments to the CIFO pragma IWAM TASK.
type nIUTnTAWSKIND is (snuE, SZOULMnG);

function J'fI _ACQRESS return AN•CS;

private

type AM Ss is now UNSIGE TPES.usED 713M.;

NO AC•M : constant ADCOESS :- 0;

prjma BUILT IN(">") ;

pragm BUILT-IN("<O");

pra BUILT--IN(N">-0);

C-8

APPEINIX F OF THE Ada STANDRAD

praga BILT In("-");

type T•SK ID is new UNSIGNE TYPES.tUIGsW mIBnR,
ND_ W= 15 : constant TASK I5 :- 0;

type PASSIVE TASK ID is new UNSIGMI TYPES.UNSIGNED IWJER;
NO PASSIVE T IUN 15: constant PASSIVE TASK ID :- 0;-

type 1W•tM ID is new UNSIGN TY .uEs.UIGNED_;TEM;
NO OAM if : constant PROM ID :- 0;

type LGONGADCss is new UNSIGNEDT S .NSIGNWIOG•R;

NO_ LONAM : constant 14W_ ADMU :- 0;

pragms WILT INC(PKE Ia AmvESS);
pragma, WILT"IN(LOaZEZ);
pragme WILTIN(CSTF0N 1OF);

pragme WILTIN(RER.1W hDES);

end SYSTM;

S. Restrictions on Representation Clauses

5.1. Pragma PACK

In the absence of pragma PACK record components are padded
so as to provide for efficient access by the target
hardware, pragms PACK applied to a record eliminate the pad-
ding where possible. Pragm PACK has no other effect on the
storage allocated for record comionents a record representa-
tion is required.

5.2. Size Clauses

For scalar types a representation clause will pack to the
number of bits required to represent the range of the sub-
type. A size clause applied to a record type will not cause
packing of components; an explicit record representation
clause must be given to specify the packing of the com-
ponents. A size clause applied to a record type will cause
packing of components only when the comonent type is a
discrete type. An error will be issued if there is
insufficient space allocated. The SIZE attribute is not
supported for task, access, or floating point types.

5.3. Address Clauses

C-9

A114XX F or THE da STMMRD

Address clauses are only supported for variables. Since
default initialisation of a variable requires evaluation of
the variable address elaboration ordering requirements
prohibit inititalization of a variables which have address
clauses. The specified address indicates the physical
address associated with the variable.

5.4. Interrupts

Interrupt entries are supported with the following interpre-
tation and restrictions:

An interrupt entry my not have any parameters.

A passive task that contains one or more interrupt entries
must always be trying to accept each interrupt entry, unless
it is handling the interrupt. The task must be executing
either an accept for the entry (if there is only one) or a
select statement where the interrupt entry accept alterna-
tive is open as defined by Mda WI 9.7.1(4). This is not a
restriction on normal tasks (i.e., signal ISRB).

An interrupt acts as a :onditional entry call in that inter-
rupts are not queuec. (see the last sentence of Ada RI
13.5.1(2) and 13.5.1(6)).

No additional requirmnts are imosed for a select state-
ment containing both a terminate alternative and an accept
alternative for an interrupt entry (see Ada NI 13.5.1(3)).

Direct calls to an interrupt entry from another task are

allowed and are treated as a normal task rendezvous.

Interrupts are not queued.

The address clause for an interrupt entry does not specify
the priority of the interrupt. It simply specifies the
interrupt vector number. For passive ISis, the nnn of the
passive(interrupt,nnn) pragma specifies the interrupt prior-
ity of the task.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following
entities:

Packages
Tasks
Labels
Etries

c-10

APPENIX F OF THE Ada STAW

5.6. Machine Code Insertions

Machine code insertions are supported.

te general definition of the package WMIM CODE provides
an assembly language interface for the target machine. It
provides the necessary record type(s) needed in the code
statement, an enumeration type of all the opcode uuemonics,
a set of register definitions, and a set of addressing mode
functions.

The general syntax of a machine code statement is as fol-
lowv:

CODE.n'(opcode, operand (, operand));

where n indicates the number of operands in the aggregate.

A special case arises for a variable ntber of operands.
The operands are listed within a subaggregate. The format
is as follows:

CODE_N,(opcode, (operand (, operand)));

For those opcodes that require no operands, namd notation
must be used (cf. MN 4.3(4)).

CODEo,(op -> opcode);

The opcode must be an enumeration literal (i.e. it cannot be
an object, attribute, or a rename).

An operand can only be an entity defined in WHIE CODE or
the 'IREF attribute.

The arguments to any of the functions defined in
MCHINE CODE must be static expressions, string literals, or
the functions defined in MACIE CODE. The 'IEF attribute
may not be used as an argument in any of these functions.

Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address expressions in an address clause are interpreted as
physical addresses.

C-l1

APPENIX F OF TiM Ad& STANARD

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

Norn.

10. Implementation Characteristics of I/O0 Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as
the record size (expreised in STOAGE•UNITS) Qhen-the size
of maWn TYPE exceeds that value. For example for uncon-
strained irrays such as string where ELEMENT TYPE'SIZE is
very large, MAX REC SIZE is used instead. MAR RECORD SIZE
is defined in IYSTIM and can be changed by a program bifore
instantiating DIRECT 10 to provide an upper limit on the
record size. In any case the maximu,. size supported is 1024
x 1024 x S70RAG UNIT bits. DIRECT 10 will raise USE ERRO
if MAX REC SIZE ixceeds this absolute limit.

Instantiations of SEQUENTIAL0 use the value MAX_ EC SIZE
as the record size (expressed in S7RAGE NITS)--wKei the
size of ELEMW TYPE exceeds that value. For example for
unconstrained arrays such as string where ELEMW TPE'SIZE
is very large, MAX REC SIZE is used - instead.
MAX RECRD SIZE is define3 in"SYSTDI and can be changed by a
program before instantiating WMTER 10 to provide an upper
limit on the record size. SEMWMTIAt_IO imposes no limit on
MAX REC SIZE.

11. Implementation Limits

The following limits are actually enforced by the implemen-
tation. It is not intended to imply that resources up to or
even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500
characters including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is
4,000,000 x STORAGE UNITS. The maxiumm, size of a statically
sized record type is 4,000,000 x STORAGE UNITS. A record
type or array type declaration that eiceeds these limits
will generate a warning message.

11.3. Default Stack Size for Tasks

C-12

APPRIDIX F OF THE Ada STANDAR

In the absence of an explicit STORAGE SIZE length specifica-
tion every task except the main progriam is allocated a fixed
size stack of 10,240 STOAGE UNITS. This is the value
returned by T'ST0ASIZE for i task type T.

11.4. Default Collection Size

In the absence of an explicit STRG SIZE length attribute
the default collection size for an access type is 100 times
the size of the designated type. This is the value returned
by T'STORAGESIZE for an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x S70RAGE UNITS for
objects declared statically within a coqpilati-n unit. If
this value is exceeded the compiler will terminate the com-
pilation of the unit with a FATAL error message.

C-13

DATC:

/07 93

